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Reversible and irreversible processes 

 
If the energetics of a physical process, such as emphasized 

in the First Law of Thermodynamics, is an important factor, expe-

rience tells that other concepts must play a role in its time evo-
lution. For example, some processes are easily reversible, others 

cannot be inverted, they are irreversible. An example of the lat-

ter class of processes is the escape of the gas in a balloon, when 
a hole is pierced into its shell. The escaped gas will never return 

into the balloon. Another example is a frictional process, in which 

the dissipated energy is irreversibly lost into other degrees of free-
dom. Such processes seem to demonstrate inherently the progress 

of time, the direction of the “Arrow of Time”. It will turn out later 

that this arrow points into the direction of increasing complexity. 
 

Even though thermodynamic systems usually contain an enor-

mous number of particles and are very complex, there are pro-
cesses which transform state A to state B but are completely re-

versible. The figure illustrates the hyperplane of equilibrium states 
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of an ideal gas containing these states. The 

arrow shows an isothermal path A  B. This 

path can be enforced by placing a cylinder 

containing an ideal gas in a heat bath, which 

is kept at fixed temperature T=Theatbath, and 
by compressing the gas slowly. The down-

ward motion of the piston (figure) transfers 

energy to the gas. This motion would heat 
the gas to a higher temperature, if no pre-

caution were taken to cool the gas simulta-

neously. The compression has to be slow 
enough to allow the gas to equilibrate con-

tinuously by adapting to the new volume 

and the fixed temperature of the surround-
ing heat bath. This is achieved by the gas generating the associ-

ated pressure required by the equation of state,  

 heat bath

2 B

2

T
p Nk

V
=  (1) 

 
The gas emits any excess internal energy continuously as heat, in 

order to remain at temperature T=Theat bath. In each point along 

this trajectory, the system is in local equilibrium with its sur-
roundings. 

  

As has been shown before, it is straightforward to calculate the 
work wmech done by the ideal gas in an isothermal (T=Theat bath) 

expansion/compression V1  V2 : 

 

       
2 2

1 1

V V
B 1

mech BV V
2

Nk T V
w p(V )dV dV Nk T ln( )

V V
 = − = − =   (2) 

 
using pV = NkBT. The relative sizes of V1 and V2 determine the 

sign of wmech, e.g., wmech< 0 for V1 < V2 (expansion). In either 

case, the temperature T is held constant, and therefore the inter-
nal energy remains constant. The loss U in internal energy asso-

ciated with the expansion is compensated exactly, and contin-

uously, during a reversibly expansion/compression by an in-
flow of heat energy into the gas from the surroundings: 
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2

1

V

mech V T constT const

w p(V )dV q
==

 = − = −     (3) 

 

It is obvious that such a procedure can be made in a reversible 
fashion. One only has to ascertain that on the return path, the gas 

assumes the equilibrium pressure compatible with the isothermal 

equation of state, for the present volume V (piston position) and 
the external temperature T=Theat bath. Upon slow retraction of the 

piston, allowing the system to continuously equilibrate, eventually 

the gas will return to its initial state A. The heat bath ‘guides’ the 
system tracing its way back exactly along the path it went from A 

to B.  

 
Adiabatic expansion or 

compression processes for 
isolated ideal-gas systems 

also belong to the class of 

reversible processes of in-
terest to thermodynamics. 

The figure illustrates such 

a trajectory A → B. The 
only energy transfer be-

tween an isolated system 

and its surroundings is ac-
complished by work done by or on the system, in the present ex-

ample, just pV work. Along the path on the state surface indicated 

in the figure, the gas performs a certain amount of work,  
 

 ( )
B B

A A

V V

1 1A A
A A A B

V V

p VdV
w p(V )dV p V V V 0

V 1


  

 

− − = − = − = − 
−

   (4) 

 

calculated from the adiabatic equation of state of an ideal gas, 

 

   A A
pV const p V = =   (5) 

 

Since the expansion work is negative, the internal energy U of 
the ideal gas, i.e., its temperature, decreases. To make an adia-

batic expansion reversible, again the process (piston movement) 

has to be slow enough such that the gas temperature drops uni-
formly over the entire volume, and the system remains at 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

ReversIrrP               W. U. Schröder 

 

4 

equilibrium at all times. The same procedure reversed will then 

return the system along the same path, back to its starting point 
A. 

 

The above discussion can be summarized in stating that both, 
isothermal and adiabatic, processes 

involving ideal gases are reversible. 

The question now arises, whether 
there are any restrictions on the 

properties of states A and B such 

that there exist reversible processes 
connecting them. The fact is, that 

there are no such restrictions:  
 

Any two equilibrium thermo-

dynamic states A and B can be 
connected by reversible pro-

cesses A B. 

 

This can be seen easily, because isotherms and adiabats repre-
sent a curvilinear coordinate system (grid) on the hyper-plane of 

all equilibrium states. Any state on this 

plane, i.e., any equilibrium state of an 
ideal gas, is situated at an intersection 

of an isotherm with an adiabat. There-
fore, as illustrated in the figure, any 

two states on the state hyper-plane 

can be connected by a series of iso-

therms and adiabats. Each segment of 

such a composite path is reversible, 

and so is the sum, the entire path. The 
total work done along such a path is 

the sum of all amounts of work done 

along each of the individual segments. 
For the example illustrated in the fig-

ure, 

 

 
B i 1

A i

4V V

mech V V
i 1

w p(V)dV p(V)dV
+

=

 = − = −   (6) 
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Similarly, the total heat absorbed along such a path is the sum 

of all amounts of heat energy absorbed along each of the individual 
segments. For the example illustrated in the figure, 

 

 
2 4

1 3

4 V V

i i 1 1 2 3 4 V V
i 1

q q q q p(V)dV p(V)dV
→ + → →

=

=  =  +  = + +    (7) 

 

The system absorbs heat only on the isothermal legs 1  2 and 3  

4 of the process and in amounts equal in magnitude, but opposite 
in sign, to the work done on these parts. On the adiabatic legs 2  

3 and 4  5, no heat is exchanged with the surroundings.  

 
The particular values of work and heat exchange represented in 

Equs. (6) and (7) pertain only to the exact pathway chosen for the 

process process1A B⎯⎯⎯⎯⎯→ . For another process, process 2A B⎯⎯⎯⎯⎯→  , con-

necting the same two states, the relations between work and heat 

exchange are obviously different. The sums and integrals over 

work and heat differentials in Equs. (6) and (7), respectively, de-
pend clearly on the particular path chosen for each leg of the tran-

sition, for example, whether it is isothermal or adiabatic. Because 

of this path dependence of the respective integrals, the differen-
tials of work and heat are sometimes termed “inexact differentials” 

denoted by dw  and dq , respectively. Such notation has been cho-

sen in the literature to alert the reader and remind him of the path 
dependence of the corresponding integral. 

 

Regardless of the path dependence of the sums and integrals 
over work and heat, the sum of all work done and all heat absorbed 

equals the change U in internal energy, going from state A to 

state B. More generally, the change in any state variable re-

mains the same on all possible pathways process XA B⎯⎯⎯⎯⎯→ . 

 

This realization has important practical consequences for the 
evaluation of state quantities. State variables are characteristics 

of a given state and independent on the sequence or history of 

processes through which the system has evolved to that state. 
Therefore, one can deduce the properties of the final state B in a 

process 1, 1A B⎯⎯⎯→ , from the properties of state A and the 

changes produced in a, conveniently chosen, hypothetical reversi-

ble process 2: 2A B⎯⎯⎯→ . Convenient choices are always 
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isothermal and adiabatic processes, or combinations thereof, since 

one can easily calculate the changes in all state variables along 
such pathways. The above example illustrates this point. A well-

known application of this principle for the determination of energy 

changes in chemical reactions is Hess’ Law. 
 

Consider as another illustrative example the two processes of 

a) an isothermal reversible and b) and an irreversible expansion 
of an ideal gas. During the re-

versible expansion, the pres-

sure decreases steadily, alt-
hough the temperature is held 

constant. The work done by 
the gas in the isothermal ex-

pansion is given by the nega-

tive integral of the isotherm 
between VA and VB, i.e., the 

area under the curve within 

the two limits. It has not de-
creased the internal energy of 

the gas, which is equal to 

(3/2)kBT per particle before, 
during, and after the expan-

sion.  It is evident that the work done by the system in an isother-

mal expansion is the maximum that it can do, |wrev| = w max. Here, 
the condition is that UA=UB. It is fulfilled by replenishing continu-

ously the energy content of the gas with heat from the surround-

ings, as this energy is expended in pV work done by the gas. With-

out contact with a heat bath, the work done by the system would 

lead to its cooling, a decrease in temperature, internal energy and 

a diminished capability of the system to do further work on the 
surroundings (e.g. on a piston). 

 

Keeping he sign convention in mind, according to which work 
done by the system is counted as negative, because it decreases 

the internal energy, this statement is equivalent to saying that 

 
      wrev = wmin < 0       (8) 

 

Now consider the irreversible expansion of the same gas in 
a process A→ C → B, with UA > UC(>UB)> UB=UA, indicated by 

T=const 

V 

p 

Max Work  
 

done by 

A 

B 
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the dashed lines in the pV diagram shown in the figure. Removing 

the external force retaining the gas at the initial volume VA sud-
denly will let the gas expand spontaneously and rapidly to an in-

termediate volume VC < VB.  

 
This expansion process VA → VC is spontaneous and irre-

versible. It is irreversible because the system has cooled, lost in-

ternal energy and gained entropy. Under no conceivable circum-
stances will the gas compress spontaneously back to the initial 

volume VA and initial pressure pA. Since this leg of the process VA 

→ VB is irreversible, the entire process is irreversible. Reestablish-
ing the initial state A requires more heat energy than the work 

done by the system in an irreversible process. 
 

In the initially rapid expansion, VA → VC, the gas pressure will 

drop precipitously from pA to pC=pb. Relatively little, if any, work 
will be done on the surroundings in this stage of the irreversible 

expansion. There can be turbulence, pressure, and temperature 

differentials across the volume in a rapid, non-equilibrium (dissi-
pative) expansion process. At {pc, VC, T }, the gas is not neces-

sarily in an equilibrium state with pressure, volume, and tem-

perature described by the equation of state. This decompression, 
which is associated with little change in volume, requires that in-

ternal energy of the gas has been lost by irradiating heat to the 

outside, thus cooling the gas. After having settled down to pB, the 
gas may expand and eventually do some work against an external 

force, until the final volume VB is reached. Along this segment, if 

in contact with a heat bath, some heat can flow back into the gas 

countering further cooling. In detail, the process may not be 

known precisely and may be very different from the dashed line in 

the figure. In any case, the work corresponding to the entire irre-
versible path is represented by the negative area under the tra-

jectory in {p, V} space (dashed curve in the figure).  

 
This work done in the irreversible process is clearly less in mag-

nitude than the work done along the reversible, isothermal path, 

i.e., |wirrrev| < |wmax| =|wrev|. This means that, accounting for the 
negative sign, that 

 

      wrev=wmax < wirrrev      (9) 
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However, initial and final state of both, reversible and ir-

reversible processes A  B are the same. In the reversible case, 

the gas has performed maximum work against an external force. 

In the irreversible case, little work was done by the gas. Its initial 

energy was partially lost as waste heat to the surroundings. There-
fore, one has the following relations between the various forms of 

energy for the two types of processes: 

 
   U = wrev + qrev = wirrev + qirrev           (10)   

 

Since it was argued that wirrev > wrev, the opposite inequality 
must hold for the heat transfer in the two processes: 

  

qirrev < qrev      (11) 
 

Consistent with these conclusions, the work required to com-

press a system is always larger, when it is irreversible than when 
it is reversible, since some of the irreversibly applied work is con-

verted into heat, which is irradiated to the outside. In any reversi-

ble compression, the excess energy is also irradiated as heat. This 
can in principle never be prevented. However, in an irreversible 

process, even more energy is irradiated as heat, wasting some of 

the applied work. 
 

             

           Carnot Processes 
 

Particularly instructive are cyclic, reversible Carnot processes, 

which form the basis of many modern ‘high-tech’ or ‘low-tech’ en-
gines. Thermodynamic processes occurring in engines running 

with ideal gases have been considered by Carnot in 1824. En-

gines that run continuously in cycles can be graphically repre-
sented in pV or other diagrams. For ideal gases, cycles consist-

ing of two isothermal and two adiabatic legs are termed 
Carnot cycles. It turns out that such Carnot engines are the most 

efficient ones that can be built. Practical engines have only a frac-

tion of the theoretically possible Carnot efficiency. 
 

The figure below attempts to illustrate the basic processes that 

drive a Carnot engine, e.g., an idealized internal-combustion mo-
tor with 4-stroke cylinders. It makes a connection between the 
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movement of a piston in an engine cylinder and the evolution of 

the cylinder gas in a pV diagram. It pictures a pV diagram with two 
isotherms (T = 0) and two adiabats (q = 0).  

 

For the isothermal expansion A → B, the temperature remains 
constant (T=T1) and, hence, the kinetic energy of the gas particles 

remains constant. Therefore, the loss of internal energy due to 

pressure-volume work done by the system during expansion has 
to be balanced by a flow q of heat energy from the surroundings 

into the system. In adiabatic processes, such as in the expan-

sion B → C no heat exchange can take place. Here, the pV work 
done by the gas in the expansion decreases the internal energy of 

the gas and, hence, decreases the temperature ( T = T2 < T1). 

 
The right-hand column of the figure shows the sequence of 

“strokes” of a thermodynamic engine that is simulated by the pV 

diagram. A piston moves in a cylinder up and down, alternatingly 
expanding or compressing the gas in the volume in the cylinder 

head. 

 
• At point A the power stroke begins. Here, the compressed gas 

expands and drives the piston down. The cylinder is in contact 
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with a “heat source” supplying heat q1> 0 to the gas keeping 

its temperature at T = T1.  
 

• At point B, the heat contact with the hot source is broken, while 

the gas is still expanding. Now, the expansion is adiabatic. No 
heat is supplied to the cylinder, and the gas cools off to T2 < T1. 

Expansion is continuing until point C is reached.  

 
So far, the system has absorbed heat, but also performed work. 

This work is given by the area under the curve ABC, 

 

 
C C

mech 1

A B

w p(V )dV q p(V )dV= − = − −   (12) 

• From point C on, the piston moves upwards, compressing the 
gas again, at first isothermally. Since T = T2, compressional 

heat q2 <0 has to be released by the system into the surround-

ings. It has to be in contact with a “cold source (heat sink)”.  

• This contact is broken at point D, from where on the compres-

sion is adiabatic, leading to an increase in temperature from T2 

back to T1. This completes the Carnot cycle, which can begin 

anew. 

During the path from C to D, the system has produced heat, but 
consumed work, i.e., work had to be done on the system. This 

work is given by the area under the curve CDA, 

 
A A

mech 2

C D

w p(V )dV q p(V )dV= − = − −   (13) 

 

Generally, this compression work is smaller in magnitude than that 
performed by the system in expansion, because the pressure is 

lower on the return path. The difference in works done by and 

on the gas is the useful work that can be extracted from the en-
gine. 

 

The amount of net work performed by the engine is given by 
the area enclosed by the cyclic path in the figure. It is positive only 

because of the temporal contact with the hot and cold sources. 

Otherwise, the system would move up and down an adiabat, and 
no net work would be done. The net work that a Carnot engine can 
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do comes from the difference in heat energies absorbed and emit-

ted: Heat is absorbed at a high temperature, and a smaller 
amount is transferred to the cold sink at a lower tempera-

ture. Obviously, not all of the absorbed heat can be converted into 

useful work, some must be dumped to the heat sink. This is the 
content of the  

 

 

        
     
(14) 

 

This law notes a surprising dissymmetry of nature: Heat 

cannot be converted completely into work, but work can be con-
verted completely into heat, e.g., by friction, a dissipative process. 

Effects such as friction make processes irreversible. It is interest-

ing to investigate, in what fundamental sense reversible and irre-
versible processes differ. 

 

A partial answer to this question can be obtained from consid-
ering the, obviously reversible, Carnot process involving an ideal 

gas. Such a cycle is illustrated in the figure on p.9. In the isother-

mal parts of the cycle, absorbed heat, q1, and work done, w1, 
are equal in magnitude. Hence, one can calculate the heat energy 

 

        B
1 1 B 1

A

V
q w Nk T ln 0

V

 
= − =   

 
    (15) 

Similarly, one calculates the outflow of heat on the path C → D, 

    

 D
2 3 B 2

C

V
q w Nk T ln 0

V

 
= − =   

 
 (16) 

 

Here, the sign of q2 is negative to indicate the heat loss suffered 

by the system.  
 

Along the adiabatic legs of the cycle, no heat is exchanged with 

the surroundings. Furthermore, the work done by the engine dur-
ing expansion, B → C, is equal in magnitude to that required to 

Second Law of Thermodynamics  

No process is possible, in which the only result is 

the absorption of heat from a reservoir and its  

complete conversion into work. (Kelvin) 
 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

ReversIrrP               W. U. Schröder 

 

12 

compress the gas again during the adiabatic leg D → A. The 

amount is simply the difference in internal energies, 
 

 ( )2 V 2 1 4
w C T T w 0=  − = −   (17) 

 

Here, CV = N(3/2)kB is the heat capacity of an ideal gas of N 
structureless particles. For the balance of energies, then only the 

isothermal legs of the Carnot cycle are essential.  

 
The flow of energy in and out of the system is reflected entirely 

in the balance of heat energies transferred. The difference be-

tween the heat absorbed (q1) and the heat emitted (q2) is 
available for conversion into useful work. In the Carnot cycle, 

this conversion is complete. One can calculate this useful work 

easily, once the volumes entering Equs. (15) and (16) are known. 
In fact, one only needs a relation between the ratios (VB/VA) and 

(VD/VC). Such a relation exists for the adiabats (isentropes) con-

necting the corresponding points in the Carnot cycle. Since for ad-
iabatic expansion of an ideal gas, TV − = const. (with  = CP/CV 

>1), one has 

     

 1 1

1 B 2 C
T V T V − − =   (18) 

and       

 1 1

1 A 2 D
T V T V − − =   (19) 

  

Taking the ratios of the l.h.s. and the r.h.s. of Equs. (18) and (19)

, one finally gets the volumes connected through an isothermal 
expansion simply scale: 

 

           VB/VA = VD/VC                    (20)  
 

Hence, the logarithmic factors in Equs. (15) and (16) are equal, 

leading to 
     

 1 B D 2

1 A C 2

q V V q
nR ln( ) nR ln( )

T V V T
=  =  = −  (21) 
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In other words, some kind of a “reduced” heat, the heat nor-

malized to the temperature, i.e., the quantity (q/T), seems to be 
a more natural variable than the heat flow q itself:  

 

• Equal amounts of S:=q/T are absorbed at the high temperature 
level (T1) and dumped again at the lower temperature (T2). 

 

This extensive observable S = (q/T) has the name entropy.  
This name has not been chosen arbitrarily. The variable has a 

deep connection to the microscopic entropy discussed in another 

section.  
  

Equation (21) is equivalent to the conclusion that the entropy 
of a system undergoing any reversible (Carnot) process is con-

served: 

 
rev rev

dq
S dS 0

T
 = = =   (22) 

     
Whatever gains or losses in entropy the system incurs along a 

given path is made up by the corresponding entropy losses and 

gains experienced by the surroundings, with which the system is 
in equilibrium. However, it is important to note that both, system 

and surroundings, separately conserve their respective entropies. 

 
The line integral in Equ. (22) is taken over a closed path on the 

state hyper-plane representing an arbitrary reversible process. 

The fact that S for the system is equal to zero along a closed path 

implies that S is a state function (dS is an exact differential). 

Along a specified path, e.g., one where conveniently T = const., 

dq can be treated as an ordinary differential. This makes it 

possible to evaluate any integrals of the type 
B

A
dq . In contrast, in 

evaluating an integral of the type 
B B

A A
dS dq / T=  , it is not neces-

sary to specify the path. All such integrals have exactly the same 
numerical value depending only on initial and final states, A and 

B, respectively. 

 
One can now compare transitions A → B associated with reversi-

ble or irreversible processes. As discussed in the context of Equ. 
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(11), the amount of heat exchanged is larger in a reversible than 

in an irreversible process. Therefore, 
 

                 qirr < qrev = dS·T     (23)        

 
and one concludes that for any process involving such thermody-

namic systems and states, 

 

      dS  dq/T             (24)  

 

where dq is the heat absorbed (dq > 0) or emitted (dq < 0) 
by the system in a process A → B,  as measured in an experi-

ment. T is the temperature of the surroundings. Equation (24)is 

valid including the signs of dS and dq.  
 

The equal sign applies to reversible processes, as proven 

previously (cf. Equ. (23)). This is another form of the Second 
Law. In integral form, this Second Law of Thermodynamics 

reads 

 
 

 

                    (25) 
 

 

As discussed in the context of the Carnot cycle, entropy can be 
gained or lost by the system, if it can interact with its surround-

ings.  

For adiabatic (q = 0) changes A→ B, of an isolated system 

in its own intrinsic thermal equilibrium and 
A B

S 0
→

 = .  

 

The system plus its surroundings may be thought of forming a 
larger, isolated system that is only able to undergo adiabatic tran-

sitions. If this ”Universe” is of the type of homogeneous systems 

considered here and if it is in thermal equilibrium, 
A B

S 0
→

 =  

should be valid for any of its transitions. If on the other hand, this 

“Universe” is not in its intrinsic equilibrium, it can be partitioned 

into one or more smaller subsystems. In the simplest case, it could 
be divided into one subsystem (the entity previously called “sys-

tem”) and a larger remainder (previously called “surroundings”), 

 B

A B

A

dq
S

T
→

    

 



 U N I V E R S I T Y   O F 

ROCHESTER 
DEPARTMENT OF CHEMISTRY 

ReversIrrP               W. U. Schröder 

 

15 

which are not (yet!) in thermal equilibrium. Any process in-

volving this subsystem and its surroundings should then 

lead to an increase 0
→


A B

ΔS  in entropy of the universe. In 

other words, (another way of stating the Second Law of Thermo-
dynamics): 

 

 The combined entropy of a system and its surroundings 
never decreases! 

 

For the Carnot process considered above, contributions to the 
integral in Equ. (25) only come from a path along an isotherm (T 

= const.). the differential dq can be treated like an exact dif-

ferential. Adiabatic expansion and compression take place with 
dq = 0, hence the term isentrope for such processes.  

 

The equal sign in Equ. (25), for which SA→B = 0, is valid only 

for a non-spontaneous, reversible process. Since for a reversible 

process involving an isolated system at equilibrium, dS = 0, 
the entropy S must have an extremum. Whether this extremum 

is a maximum or a minimum depends on higher-order variations 

of entropy with process variables. Maximum entropies are 
achieved when d2S = 0 but d2S < 0. To calculate these higher-

order variations, the functional dependence of S on all process var-
iables needs to be established. That is one of the tasks of the mi-

croscopic theory of statistical thermodynamics which makes a 

connection between entropy, density of accessible system 
states, and probability. 

It turns out that S is at a maximum in the above reversible 

processes. Irreversible processes (transitions), the only ones that 
occur spontaneously, are driven into the direction of increasing 

entropy, dS > 0, with thermal equilibrium being the final stage of 

a sequence of such processes. In the following, the entropy 
changes are calculated for a few examples. 

 

As stated above, irreversible processes encounter or, rather, 
are driven by entropy gains. For example, frictional work wfr on 
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a system at temperature T is irreversibly 

dissipated, with SA→B = wfr/T > 0.  

Another, familiar example for a dissipa-
tive process is heat conduction, illustrated 

on the left for a system consisting of a hot-

plate at T1, a cold sink at T2 < T1, filled with 
a water-ice mix, and a thermal conductor 

connecting separate parts of the system. In 

such a heat conduction process, an amount 
q of heat energy is transferred from a 

source at high temperature T1 to a sink at a 

lower temperature T2. Define state A as the 
initial state with a significant internal tem-

perature gradient and state B as another 

state, where a small amount q of heat has 

been transferred to the cold part of the sys-

tem. If neither temperature T1 or T2 have yet 

changed much in the process, the entropy 
change is calculated easily. It increases by  

 

        SA → B  (q/T2) - (q/T1) > 0    (26) 

 

It is straightforward to formulate the problem more rigorously in 

differential calculus. This familiar process has an obviously irre-
versible character.  

 

In general, the entropy of a substance can be measured by 

transferring specified amounts qi of heat energy to a sample and 

measuring the resulting temperature gains Ti = (Ti - Ti-1): 

 

   S T T S T
q

T TN

i

i ii

N

( ) ( )
/

= = +
+−=

0

11 2



           (27) 

 

 
A setup such as shown in the figure on p. 17 is typically used to 

determine the entropy of liquids. Here, an electric heating element 

is used to introduce slowly well known amounts of heat into the 
liquid. The rise of the temperature is monitored and recorded using 

a modern thermo-element as thermometer. 

hot plate T1 

cold sink T2 

<T1 

q 
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The thermometer is 

shielded from the 
heating element, and 

the liquid is well 

stirred during the en-
tire experiment. For 

gases, one can de-

sign a similar experi-
mental setup. 

 

Results of entropy 
measurements are 

collected in the table 
for different repre-

sentative materials at 

room temperature. 
As seen from this ta-

ble, materials in crys-

talline form have the 
lowest entropy, just a few J/K per mole of substance. Water and 

other liquids have higher entropy values, and gases have the high-

est entropies. It is interesting that the highly structured Diamond 
phase of carbon has lower entropy than its less ordered graphite 

form.  

One also observes higher entropies for gases with more complex 
structure than for simpler molecules that have fewer degrees of 

freedom. It is a general trend that the entropy increases with the 

number of degrees of freedom and with temperature.  
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Transitions in phase of a pure substance are very obvious situ-
ations in which the number of degrees of freedom of the substance 

changes. For example, it requires absorption of a certain amount 

of “latent” heat to convert a solid into a liquid and a liquid into a 
vapor (gas). As will be discussed in detail elsewhere, each phase 

change occurs in the vicinity of a characteristic temperature of the 

substance. Water vaporizes at the temperature of Tvap = 373 K at 
normal pressure. It then requires heat transfer in the amount of 

Hvap = 40.7 kJ per mole to actually turn into vapor. The associated 

entropy increase in this phase transition can be measured to, 
 

 vap

vap

vap

H
S

T


 =  (28) 

 
In the case of water, this entropy gain amounts to Svap = 109.0 

J/K per mole. Similar relations appear to be valid for solid-liquid 

phase transitions, suggesting that the concepts developed here in 
the context of gases have much more general relevance. 

 

At low temperatures, all substances have very small entropies, 
consistent with the following formulation of the  

 

3rd Law of Thermodynamics 

 
As will be seen in the discussion of the microscopic origin of this 

law, strictly Equ. (29) is only correct to a good approximation. In 

the following, the entropy is calculated for gases and processes 
connecting different thermodynamic states. One important task 

consists in deriving an expression for the entropy in terms of other 

state variables, variables that can perhaps be measured more eas-
ily than the entropy. 

 

S (T=0)= 0 (29) 


